Tableau 2. Principales distances interatomiques (Å) et angles des liaisons (°) dans l'anion Cr₃O₁₀²⁻ et dans les polyèdres N(1)O₈, N(2)O₉ et N(3)O₆

Tétraédre Cr(1)O₄		Tétraèdre Cr(2)O₄	
Cr(1) - O(E11)	1.602 (4)	Cr(2)-O(L12)	1,737 (4)
Cr(1)O(E12)	1,620 (5)	Cr(2)-O(E21)	1,587 (4)
Cr(1) - O(E13)	1.598 (4)	Cr(2)O(E22)	1,598 (7)
Cr(1) - O(L12)	1,829 (5)	O(L12)-Cr(2)-O(L12)'	111,3 (2)
O(E11) - Cr(1) - O(E12)	108,6 (2)	O(L12)-Cr(2)-O(E21)	110,3 (2)
O(E11)-Cr(1)-O(E13)	112,4 (3)	O(L 2) - Cr(2) - O(E22)	107,6 (2)
O(E11)-Cr(1)-O(L12)	108.2 (2)	O(E21) - Cr(2) - O(E22)	109,7 (2)
O(E12) - Cr(1) - O(E13)	110.4 (2)		
O(E12) - Cr(1) - O(L12)	108,3 (2)		
O(E13)-Cr(1)-O(L12)	108,8 (2)		
Polyèdre N(1)O.		Polvedre N(2)O	
N(1) - O(E12)	2,958 (7) (×2)	N(2) - O(E12)	2,965 (7) (×3)
N(1)-O(E12)'	3,010 (8) (×2)	N(2) - O(L12)	3,077 (6) (×3)
N(1)-O(E13)	2,948 (6) (×2)	N(2) - O(E22)	3,123 (7) (×3)
N(1) - O(E21)	3,066 (8)		
N(1)-O(E22)	3,037 (9)	Polyedre N(3)O	
		N(3)-O(E11)	2,960 (4) (×6)

- Chaque atome N(3), placé sur un centre de

symétrie et sur un axe 6₃, s'entoure de six oxygènes en

un octaèdre déformé (aplati suivant un de ses axes

Chaque polyèdre $N(2)O_9$ partage sa face formée de trois atomes O(E22) et située sur un miroir *m* avec un autre polyèdre $N(2)O_9$, et chacun de ses sommets O(E22) avec un polyèdre $N(1)O_8$. Le polyèdre $N(2)O_9$ partage également chacune de ses trois arêtes O(E12)-O(E12) avec un polyèdre $N(1)O_8$, et les trois sommets O(L12) qui lui restent ne sont liés qu'à lui.

Chaque polyèdre $N(1)O_8$ partage deux de ses quatre arêtes O(E12) avec deux polyèdres $N(1)O_8$, et les deux autres avec deux polyèdres $N(2)O_9$. De plus, il partage son sommet O(E22) avec deux polyèdres $N(2)O_9$.

Quant aux polyèdres $N(3)O_6$, ils sont isolés des autres polyèdres de coordination et ne sont liés qu'aux anions Cr_3O_{10} .

Références

BLUM, D. (1979). J. Appl. Cryst. 12, 608.

Löfgren, P. (1974). Chem. Scr. 5, 91-96.

- MATTES, R. & MESCHEDE, W. (1973). Z. Anorg. Allg. Chem. 395, 216-222.
- Le Tableau 2 donne les principales distances interatomiques et angles des liaisons dans l'anion PREWITT, C. T. (1966). SFLS-5. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
 - SEITER, E. D. (1957). Thesis, Rutgers Univ. New Brunswick.

Acta Cryst. (1980). B36, 137-139

 Cr_3O_{10} , ainsi que les distances N-O.

ternaires) de symétrie 3.

Structure du Dichromate de Cadmium et d'Ammonium Dihydraté: $Cd(NH_4)_2(Cr_2O_7)_2.2H_2O$

PAR D. BLUM, A. DURIF ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 13 juillet 1979, accepté le 1 octobre 1979)

Abstract. Cd(NH₄)₂(Cr₂O₇)₂. 2H₂O, monoclinic, C2/c, a = 14.48 (5), b = 6.974 (2), c = 15.86 (5) Å, $\beta = 93.25$ (3)°, Z = 4, $D_x = 2.58$ Mg m⁻³. The crystal structure has been solved with 2740 independent reflexions. The final *R* value for the 2198 highest reflexions is 0.029. The Cd atom is octahedrally coordinated to four O atoms from the Cr₂O₇ groups and two from water molecules. The NH₄ group is surrounded by seven O atoms and a water molecule.

Introduction. Ce travail fait suite à la caractérisation du dichromate de cadmium et de potassium dihydraté (Durif & Averbuch-Pouchot, 1979). Il apporte un deuxième exemple de dichromate à cations associés mixtes et de valences différentes.

0567-7408/80/010137-03\$01.00

La préparation chimique et les données cristallographiques relatives à ce sel font l'objet d'une autre publication (Blum, 1979).

Le cristal utilisé pour la détermination de la structure était un fragment approximativement cubique dont l'arête moyenne mesurait environ 0,16 mm.

2740 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre Philips PW 1100 fonctionnant à la longueur d'onde de l'argent (0,5608 Å) monochromatisée par une lame de graphite. Chaque réflexion était mesurée en balayage ω dans un domaine de 1,20° à la vitesse de 0,02° s⁻¹. Le fond continu était mesuré durant 10 s à chaque extrémité de ce domaine. Le domaine angulaire exploré s'étendait de 3 à 30° (θ). Les deux réflexions de référence utilisées (022 et 022) © 1980 International Union of Crystallography

Les valeurs des écarts types sont données entre parenthèses.

	Sites	x	у	z	$B_{\acute{e}a}$ (Å ²)
Cd	4(e)	0,0 (0)	0,91166 (4)	0,25 (0)	1,66
N	8(f)	0,1327 (2)	0,3860 (4)	0,4084 (2)	3,27
Cr(1)	8(f)	0,24826 (3)	0,41156 (7)	0,16078 (3)	2,06
Cr(2)	8(f)	0,10507 (3)	0,13372 (6)	0,07390 (3)	1,89
O(E11)	8(f)	0,1792 (2)	0,4404 (4)	0,2356 (2)	4,91
O(E12)	8(f)	0,3564 (2)	0,4134 (4)	0,1903 (2)	5,68
O(E13)	8(f)	0,2739 (2)	0,0794 (3)	0,4065 (2)	4,75
O(L12)	8(f)	0,2210 (1)	0,1899 (3)	0,1096 (1)	2,67
O(E21)	8(f)	0,0379 (1)	0,1337 (3)	0,1540 (1)	2,87
O(E22)	8(f)	0,3920 (2)	0,4258 (3)	0,4676 (2)	3,90
O(E23)	8(f)	0,0677 (2)	0,2951 (4)	0,0078 (1)	3,85
O(W)	8(<i>f</i>)	0,4737 (2)	0,1647 (3)	0,3407 (1)	3,07

n'ont pas subi de variations significatives durant la période de mesure.

L'analyse structurale a été effectuée selon la méthode de l'atome lourd. L'étude de la fonction de Patterson permet de localiser l'atome de cadmium en position spéciale 4(e) du groupe C2/c et un atome de chrome en position générale. A ce stade, des synthèses de Fourier successives alternées avec des cycles d'affinement (Prewitt, 1966) permettent de préciser la totalité de l'arrangement atomique, à l'exception des atomes d'hydrogène. De nouveaux cycles d'affinement, utilisant des paramètres thermiques anisotropes, conduisent, après élimination de 542 raies faibles et mal mesurées ($||F_o| - |F_c||/\sigma < 4$ et $F_o < 30$ dans notre échelle de mesure qui s'étend de 1 à 500), à un résidu cristallographique R = 0,029.*

* Les listes des facteurs de structure, des paramètres thermiques anisotropes et des longueurs des axes principaux des ellipsoïdes de vibration thermique et leur orientation par rapport aux axes cristallographiques ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 34805: 25 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Projection sur le plan *ab* des deux unités formulaires $Cd(NH_4)_2(Cr_2O_7)_2.2H_2O$ contenues dans la demi-maille inférieure et environnement des cations.

Fig. 2. Projection sur le plan *ac* de l'arrangement atomique de $Cd(NH_4)_2(Cr_2O_7)_2$. 2H₂O.

Tableau 2. Principales distances interatomiques (Å) et angles des liaisons (°) dans Cd(NH₄)₂(Cr₂O₂)₂.2H₂O

Les valeurs des écarts types sont données entre parenthèses. Les valeurs soulignées sont les distances Cr-O, les angles O-Cr-O sont inscrits dans les triangles supérieurs et les distances O-O dans les triangles inférieurs.

Tétraèdre Cr(1)O₄

Cr(1)	O(E11)	O(E12)	O(E13)	O(L12)			
O(E11)	1,607 (3)	114,9 (1)	106,9 (1)	108,3 (1)			
O(E 2)	2,711(4)	1,610 (2)	110,0(1)	109,1 (1)			
O(E13)	2,579 (4)	2,633 (4)	1,604 (3)	107,4 (1)			
O(<i>L</i> 12)	2,747 (3)	2,763 (3)	2,730 (3)	1,780 (2)			
T:	C=(2)0						
	$Cr(2)O_4$	0(501)	0 (500)	0 (522)			
Cr(2)	O(L12)	O(E21)	O(E22)	O(E23)			
O(L12)	1,784 (2)	110,0(1)	106,5 (1)	109,2 (1)			
O(E21)	2,809 (3)	1,643 (2)	110,5 (1)	108,1 (1)			
O(E22)	2,709 (3)	$\overline{2,659(3)}$	1,594 (2)	112,5 (1)			
O(E23)	2,768 (3)	2,633 (3)	2,665 (3)	1,610 (2)			
Octaèdre CdO							
occucare		z12) 2	$235(2) \times 2$				
		E 212) 2 E 211) 2	$(2) \times (2) $				
		(21) (21)	$(2) \times (2)$				
		<i>v</i>) 2	,289 (2) × 2				
Polyedre	NO						
N-O(E)	1) 2,883	3(4) N	-O(E21)	3,146 (3)			
N = O(E)	3) 2,960)(4) N	-O(E22)	2,967 (4)			
N = O(E)	3)' 3.171	(4) N	-O(E23)	2.914 (4)			
N=O(L)	2) 3022	N N	$-\Omega(W)$	3 155 (3)			
1. O(L1	2, 3,022	- (3)	$\mathcal{O}(n)$	5,155 (5)			

Le Tableau I donne les paramètres des positions atomiques et les facteurs d'agitation thermique isotrope.

Discussion. Les Figs. 1 et 2 représentent respectivement les projections sur les plans *ab* et *ac* de la moitié et de la totalité de l'arrangement atomique de $Cd(NH_4)_2$ - $(Cr_2O_7)_2$. $2H_2O$. L'atome de cadmium, situé sur un axe binaire du groupe, s'entoure d'un octaèdre assez peu déformé de quatre atomes d'oxygène extérieurs du groupement Cr_2O_7 et de deux molécules d'eau. Le groupement ammonium a une coordination formée d'une molécule d'eau et de sept atomes d'oxygène dont un est l'oxygène de liaison O(L12) du groupement Cr_2O_7 .

L'anion Cr_2O_7 est caractérisé par un angle Cr(1)-O(L12)-Cr(2) de 121,1° faible par rapport à la moyenne des angles de ce type observés dans les dichromates. Sa configuration se rapproche de la configuration (a) de symétrie mm décrite par Wilhelmin (1966).

Les polyèdres de coordination des cations forment des enchaînements bidimensionnels infinis approximativement contenus dans les plans (404). Ce corps présente une certaine analogie structurale avec $CdK_2(Cr_2O_7)_2$. $2H_2O$ (Durif & Averbuch-Pouchot, 1979), en ce qui concerne l'environnement des cations potassium et ammonium et la forme des anions Cr_2O_7 .

Le Tableau 2 donne les principales distances interatomiques et angles de liaison de cet arrangement.

Références

BLUM, D. (1979). J. Appl. Cryst. 12, 605.

- DURIF, A. & AVERBUCH-POUCHOT, M. T. (1979). Acta Cryst. B35, 1456-1457.
- PREWITT, C. T. (1966). SFLS-5. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.

WILHELMIN, K. A. (1966). Ark. Kemi, 26, 149–156.

Acta Cryst. (1980). B36, 139-141

Structure d'un Tellurate d'Ammonium: NH₄TeO₃(OH)

PAR L. BENMILOUD, J. MORET, M. MAURIN ET E. PHILIPPOT

Laboratoire de Chimie Minérale C, ERA 314, Université des Sciences et Techniques du Languedoc, place Eugène Bataillon, 34060 Montpellier CEDEX, France

(Reçu le 4 juillet 1979, accepté le 1 octobre 1979)

Abstract. NH₄TeO₃(OH), triclinic, $P\bar{1}$, a = 5.149 (2), b = 7.095 (3), c = 7.349 (3) Å, $\alpha = 123.27$ (2), $\beta = 111.79$ (2), $\gamma = 70.85$ (2)°, Z = 2, V = 205.7 Å³, $M_r = 210.6$, $d_c = 3.4$ Mg m⁻³, μ (Mo $K\alpha$) = 7.36 mm⁻¹. The structure was solved by means of Patterson and Fourier syntheses and refined to a final R value of 0.038 using 859 independent reflexions. This structure is characterized by chains of (TeO₄)_n octahedra which share two edges and are also linked by short symmetric hydrogen bonds.

Introduction. L'étude du ternaire NH_3 -TeO₃-H₂O par synthèse hydrothermale sous pression conduit à la formation de la phase NH_4 TeO₃(OH).

Peu de travaux ont été effectués sur ces tellurates d'ammonium; on peut citer dans ce système ternaire NH_3 -TeO₃-H₂O les phases (NH_4)₂TeO₂(OH)₄ (Meyer & Holowatyj, 1948), (NH_4)₂TeO₄ (Swartz, Wynne & Hercules, 1971) et récemment (NH_4)₂Te₃O₈(OH)₄ (Moret, Maurin & Philippot, 1978).

Nous allons présenter ici les résultats obtenus pour la phase $NH_4TeO_3(OH)$ de composition globale: $NH_3.TeO_3.H_2O$. La synthèse hydrothermale de $NH_4TeO_3(OH)$ a été effectuée à partir d'un mélange convenable d'acide orthotellurique $Te(OH)_6$ (mono-

clinique) et d'une solution d'ammoniaque à 25% dans un tube d'or scellé. Ce mélange, maintenu à une température de 533 K sous une pression de 6 MPa pendant trois jours conduit à la formation d'une masse bien cristallisée. Les monocristaux se présentent sous formes d'aiguilles incolores.

Une étude préliminaire en chambre de Weissenberg permet de déterminer les constantes radiocristallographiques de la maille de ce composé.

L'enregistrement des intensités des réflexions a été effectué à l'aide d'un diffractomètre automatique Nonius CAD-4 (rayonnement Mo K α , monochromateur à lame de graphite) avec un balayage $\omega - \theta$. 859 réflexions indépendantes pour une valeur de $\theta <$ 30° et de $\sigma(I)/I < 0,3$ ont été conservées pour la détermination et l'affinement de la structure (Susa & Steinfink, 1971). (Dimensions du cristal: 0,28 × 0,12 × 0,11 mm.)

Une synthèse de Patterson tridimensionnelle permet de localiser la position de l'atome de tellure dans la maille, une synthèse de différence de Fourier tridimensionnelle utilisant la contribution de cet atome permet de localiser l'ensemble des atomes d'oxygène et d'azote. L'affinement de ces atomes en tenant compte de leur facteur de température isotrope conduit à une valeur de

© 1980 International Union of Crystallography